5.7 Notes and Examples

Name:

Inverse Trig Derivatives: Derivatives

- 1. Warm up: Trig Drill. The sine function takes an angle, and returns a ratio. The arcsine function takes
 - a <u>Catio</u>, and returns an <u>angle</u>
 - (a) If $\sin \frac{\pi}{6} = \frac{1}{2}$, then $\arcsin \frac{1}{2} = \mathcal{I}_{\mathcal{C}}$
 - (b) If $\sin \frac{\pi}{6} = -\frac{1}{2}$, then $\arcsin -\frac{1}{2} = -\frac{\pi}{2}$
 - (c) If $\sin \frac{5\pi}{6} = \frac{1}{2}$, then $\arcsin \frac{1}{2} = \frac{7}{6}$ (as before. Note many angles have a sin of $\frac{1}{2}$)
 - (d) If $\sin \frac{11\pi}{6} = -\frac{1}{2}$, then $\arcsin -\frac{1}{2} = -\frac{1}{16}$
 - (e) Try practicing here: https://www.mathorama.com/trigdrill/(Press the red Start button to begin)
- 2. Review of arcsine $(\arcsin x, \sin^{-1} x)$, arccosine $(\arccos x, \cos^{-1} x)$, and arctangent $(\arctan x, \tan^{-1} x)$
 - (a) In order to have inverse functions of periodic trig functions, we restrict the range.
 - (b) Arcsine and Arctangent: If the ratio is $\underline{p \circ \underline{s}}$, the angle returned is between \underline{v} and \underline{v} (Quadrant \underline{L})
 - (c) Arcsine and Arctangent: If the ratio is <u>neg</u>, the angle returned is between <u>0</u> and <u> $-\overline{J_2}$ </u> (Quadrant <u>II</u>)
 - (d) Arccosine: If the ratio is $\rho \sigma s$, the angle returned is between $\rho \sigma s$ and T_2 (Quadrant I)
 - (e) Arccosine: If the ratio is \underline{Neg} , the angle returned is between $\underline{T2}$ and \underline{T} (Quadrant \underline{I})

(f) Graph $y = \arcsin x$ and the restricted $y = \sin x \{-\frac{\pi}{2} \le x \le \frac{\pi}{2}\}$ using your TI-84 or https://www.desmos.com/calculator/sxjpz2cb63

(g) Graph $y = \arctan x$ and the restricted $y = \tan x \{-\frac{\pi}{2} \le x \le \frac{\pi}{2}\}$ using your TI-84 or https://www.desmos.com/calculator/sxjpz2cb63

(h)

- 3. Deriving the Derivative of $y = \arcsin x$
 - (a) Draw a right triangle with hypotenuse 1, acute angle y and opposite leg with length x.
 - (b) Use the Pythagorean Theorem to find the length of the adjacent leg.
 - (c) Start with $y = \arcsin x$ (note how this true from our drawing)
 - (d) Take the sine of both sides (note how this can also be verified from the drawing SOH-CAH-TOA)
 - (e) Implicitly differentiate both sides with respect to x (Remember the chain rule)
 - (f) Divide both sides by $\cos y$
 - (g) Substitute $\cos y$ with "adjacent over hypotenuse" from the drawing.

QED!

$$y = \operatorname{Arcsin x}$$

$$x \quad \operatorname{Sin } y = x$$

$$(\cos y)(\frac{4u}{4x}) = 1$$

$$\frac{du}{dx} = \frac{1}{\sqrt{1-x^2}}$$

- 4. Deriving the Derivative of $y = \arctan x$
 - (a) Draw a right triangle with adjacent leg 1, acute angle y and opposite leg with length x.
 - (b) Use the Pythagorean Theorem to find the length of the hyptenuse.

(c) Start with $y = \arctan x$ (note how this true from our drawing)

- (d) Take the tangent of both sides (note how this can also be verified from the drawing SOH-CAH-TOA)
- (e) Implicitly differentiate both sides with respect to x (Remember the chain rule)
- (f) Divide both sides by $\sec^2 y$
- (g) Rewrite this using $\cos y$ rather than $\sec y$

(h) Substitute $\cos y$ with "adjacent over hypotenuse" from the drawing.

y = arctan x tun y = x

 $(\sec^{2} y)(\frac{dy}{dx}) = 1$ $\frac{dy}{dy_{c}} = \frac{1}{\sec^{2} y} = \frac{1}{(1+x^{2})^{2}} = \frac{1}{1+x^{2}}$

Try deriving $y = \arccos x$ on your own, or if you need help: https://www.mathorama.com/gsp/Arccosine.pdf

Page 4 of 4

5. Theorems

$$\frac{d}{dx} [\arcsin x] = \frac{1}{\sqrt{1 - x^2}} \qquad \int \frac{1}{\sqrt{1 - x^2}} \, dx = \text{ aresin } x + C$$

ion of x:
$$\frac{d}{dx} [\arcsin u] = \frac{u'}{\sqrt{1 - u^2}} \qquad \int \frac{u'}{\sqrt{1 - u^2}} \, dx = \text{ arcsin } u + C$$

$$\frac{d}{dx} [\arctan x] = \frac{1}{1 + x^2} \qquad \int \frac{1}{1 + x^2} \, dx = \text{ artsin } x + C$$

If u is differentiable function of x:

$$\frac{d}{dx}\left[\arcsin u\right] = \frac{u'}{\sqrt{1-u^2}}$$

$$\frac{d}{dx}\left[\arctan x\right] = \frac{1}{1+x^2}$$

If u is differentiable function of x:

$$\frac{d}{dx}\left[\arctan u\right] = \frac{u'}{1+u^2} \qquad \qquad \int \frac{u'}{1+u^2} \, dx = \arctan u + C$$

- 6. Examples
 - (a) If $f(x) = \arcsin(2x)$, find f'(x)

$$\frac{1}{\sqrt{1-(2x)^2}} \cdot 2 = \frac{2}{\sqrt{1-4x^2}}$$

(b) If $f(x) = \arctan(3x)$, find f'(x)

$$\frac{1}{1+(3x)^2} \cdot 3 = \frac{3}{1+9x^2}$$

(c) If $f(x) = \arcsin \sqrt{x}$, find f'(x)

$$\frac{1}{\sqrt{1-x}}, \frac{1}{2}, x^{-1/2} = \frac{1}{2\sqrt{1-x}} = \frac{1}{2\sqrt{1-x^2}}$$

(d) If
$$f(x) = \arcsin x + x\sqrt{1-x^2}$$
, find $f'(x)$

$$\frac{1}{\sqrt{1-x^{2}}} + x\left(\frac{1}{x}\right)\left(1-x^{2}\right)^{\sqrt{2}}\left(-\frac{1}{x}x\right) + (1)\sqrt{1-x^{2}}$$

$$\frac{1}{\sqrt{1-x^{2}}} + \frac{-x^{2}}{\sqrt{1-x^{2}}} + \sqrt{1-x^{2}}$$

$$\frac{1-x^{2}}{\sqrt{1-x^{2}}} + \sqrt{1-x^{2}}$$

$$\frac{(1-x^{2})^{2}}{\sqrt{1-x^{2}}} + \sqrt{1-x^{2}} = \sqrt{1-x^{2}} + \sqrt{1-x^{2}}$$

St. Francis High School

Page 4 of 4

5. Theorems

$$\frac{d}{dx} [\arcsin x] = \frac{1}{\sqrt{1 - x^2}} \qquad \int \frac{1}{\sqrt{1 - x^2}} \, dx = \text{ aresin } x + C$$

ion of x:
$$\frac{d}{dx} [\arcsin u] = \frac{u'}{\sqrt{1 - u^2}} \qquad \int \frac{u'}{\sqrt{1 - u^2}} \, dx = \text{ arcsin } u + C$$

$$\frac{d}{dx} [\arctan x] = \frac{1}{1 + x^2} \qquad \int \frac{1}{1 + x^2} \, dx = \text{ artsin } x + C$$

If u is differentiable function of x:

$$\frac{d}{dx}\left[\arcsin u\right] = \frac{u'}{\sqrt{1-u^2}}$$

$$\frac{d}{dx}\left[\arctan x\right] = \frac{1}{1+x^2}$$

If u is differentiable function of x:

$$\frac{d}{dx}\left[\arctan u\right] = \frac{u'}{1+u^2} \qquad \qquad \int \frac{u'}{1+u^2} \, dx = \arctan u + C$$

- 6. Examples
 - (a) If $f(x) = \arcsin(2x)$, find f'(x)

$$\frac{1}{\sqrt{1-(2x)^2}} \cdot 2 = \frac{2}{\sqrt{1-4x^2}}$$

(b) If $f(x) = \arctan(3x)$, find f'(x)

$$\frac{1}{1+(3x)^2} \cdot 3 = \frac{3}{1+9x^2}$$

(c) If $f(x) = \arcsin \sqrt{x}$, find f'(x)

$$\frac{1}{\sqrt{1-x}}, \frac{1}{2}, x^{-1/2} = \frac{1}{2\sqrt{1-x}} = \frac{1}{2\sqrt{1-x^2}}$$

(d) If
$$f(x) = \arcsin x + x\sqrt{1-x^2}$$
, find $f'(x)$

$$\frac{1}{\sqrt{1-x^{2}}} + x\left(\frac{1}{x}\right)\left(1-x^{2}\right)^{\sqrt{2}}\left(-\frac{1}{x}x\right) + (1)\sqrt{1-x^{2}}$$

$$\frac{1}{\sqrt{1-x^{2}}} + \frac{-x^{2}}{\sqrt{1-x^{2}}} + \sqrt{1-x^{2}}$$

$$\frac{1-x^{2}}{\sqrt{1-x^{2}}} + \sqrt{1-x^{2}}$$

$$\frac{(1-x^{2})^{2}}{\sqrt{1-x^{2}}} + \sqrt{1-x^{2}} = \sqrt{1-x^{2}} + \sqrt{1-x^{2}}$$

St. Francis High School